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ABSTRACT

In this project, we propose a Python-based program for simulating a one-dimensional

quantum system that incorporates multiple delta Dirac potentials. The primary aim of

this study is to investigate the scattering phenomenon within such a system. To

achieve this, we first introduce a dimensionless variable to make the corresponding

Schrödinger equation a dimensionless second-order differential equation.

Subsequently, we developed a program capable of modeling the system across four

distinct categories. By utilizing this program, we obtain wave functions and calculate

transmission and reflection coefficients for various combinations of potential

strengths, distances, and the number of the Dirac delta potentials. Through

comprehensive data analysis, we have the capability to create variations plots that

simulate the system effectively.

Keywords: Multiple Dirac delta Potentials; quantum system; Python programming;

Transmissions; and Reflection probability.

iii



ÖZ

Bu projede, birden fazla delta Dirac potansiyelini içeren bir boyutlu kuantum

sisteminin simülasyonu için Python tabanlı bir program öneriyoruz. Bu çalışmanın

temel amacı, böyle bir sistemde saçılma olgusunu incelemektir. Bu amaca ulaşmak

için öncelikl, ilgili Schrödinger denklemini boyutsuz ikinci dereceden diferansiyel

denklem haline getirmek için boyutsuz bir değişken tanıtıyoruz. Ardından, sistemi

dört ayrı kategoride modelleyebilen bir program geliştiriyoruz. Bu programı

kullanarak, çeşitli potansiyel güçleri, mesafeleri ve Dirac delta potansiyellerinin

sayısını içeren kombinasyonlar için dalga fonksiyonlarını elde ediyor, iletim ve

yansıma katsayılarını hesaplıyoruz. Kapsamlı veri analizi sayesind sistemi etkili bir

şekilde simüle eden değişken grafikler elde ediyoruz.

Anahtar Kelimeler: Çoklu Dirac delta potansiyelleri; kuantum sistemi; Python

programlama; İletim; Yansıma olasılığı.
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Chapter 1

INTRODUCTION

The Dirac delta potential has a profound impact on the field of science, with

significant applications in various areas. For instance, the Kronig-Penny model stands

out as a crucial example, as it effectively elucidates the formation of band gaps in

crystal structures [1]. Additionally, notable studies have demonstrated the behavior of

scattering and reflection phenomena for arbitrary potentials using delta potentials [2].

Moreover, numerous investigations have focused on the study of Dirac delta

potentials through different approaches, such as the transfer matrix method, which

has been employed to explore transmission resonance, threshold anomalies, and

Bloch states [3–8]. Another significant line of inquiry has centered around the use of

the Lippmann-Schwinger equation to investigate scattering theory for Dirac delta

potentials [9, 10].

In this study, we initiate our exploration by representing the Schrödinger equation

dimensionless in Section 2. Subsequently, we proceed to simulate a system consisting

of multiple one-dimensional Dirac delta potentials using Python. The versatility of

this program allows it to accommodate any number of potentials, as detailed in

Section 3. In Section 4, our focus shifts to the modification of the code to generate

regional wavefunctions. Through the application of boundary conditions at each

potential point, we establish a system of equations that yields transmission and

reflection coefficients in Section 5. To further enrich our analysis, we extend our code

to render the system, facilitating the discussion of impurities within the system. This
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leads to the plotting of various essential parameters, such as wavefunctions,

transmission, and reflection probabilities. Furthermore, the significance of this

research is underscored by its potential to inspire further investigations in the field of

quantum mechanics.

The combination of theoretical analysis and computational simulations showcased in

this study serves as a powerful model for approaching complex quantum systems,

providing a stepping stone for researchers to tackle even more intricate problems.
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Chapter 2

DIMENSIONLESS FORM OF THE SCHRÖDINGER

EQUATION

In this section, we consider the Schrödinger equation with a Dirac delta potential

V (x) = V0δ (x− x0). Furthermore, we initiate the process of making the Schrödinger

equation dimensionless by introducing a new variable, y = kx, where k is the scaling

parameter. By applying this transformation, we aim to express the equation in a

dimensionless form. Subsequently, we discuss the scattering problem, in order to

determine the transmission and reflection coefficients associated with the system.

starting from Schrodinger equation

− h̄2

2m
d2ψ

dx2 −V0δ (x− x0)ψ = Eψ (2.1)

By substituting the new variable y = kx, k2 = 2mE
h̄2 , Ṽ0 =

2mV0
h̄2 into equation (2.1) it will

simplify as follows:

−d2ψ

dy2 −ξ δ (y− y0)ψ = ψ (2.2)

where ξ = Ṽ0
k . by integrating both sides of (2.2) from y0− ε to y0 + ε then by taking

the limit as ε approaches zero we obtain the following result:

dψR

dy
(yo)−

dψL

dy
(yo) =−ξ ψ(y0) (2.3)

which equation (2.3) shows the behaviour or wavefunctions at the boundary. here

dψR
dy (yo) represent the derivative of wavefunctions from right hand side and dψL

dy (yo)
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is the derivative of wavefunction from the left-hand side. Now by considering the

Schrödinger equation at the regions of y < y0 and y0 < y, we get the following result:

ψL = exp(iy)+ r exp(−iy) (2.4)

ψR = t exp(iy) (2.5)

In which r and t are the reflection and transmission coefficients. by applying the

continuity boundary conditions presented in equations (2.4) and (2.5) at y = y0, and

considering equation (2.3) we can easily determine the transmission and reflection

coefficients, which are expressed as follows:

t =
2i

ξ +2i
(2.6)

r =
−ξ exp(2iy0)

ξ +2i
(2.7)

The probability invariance is also satisfied as follows | t |2 + | r |2= 1, where | t |2

and | r |2 are the probability of transmission and reflection of a particle undergoing the

single Dirac delta potential

4



Chapter 3

PYTHON-BASED SOLUTION FOR MULTIPLE DIRAC

DELTA POTENTIALS

In this section, we propose a Python code designed to generate multiple Dirac delta

potentials. The primary aim of this program is to calculate the wave functions within

each region and create corresponding plots based on the associated distances.

Furthermore, the program facilitates the calculation of transmission and reflection

coefficients. Additionally, the program allows for the consideration of impurities

within the system. At the program’s outset, we import the essential libraries, such as

numpy, sympy,scipy and matplotlib.pyplot for numerical calculation, symbolic and

scientific computation as well as data visualization as shown in the code below:

import sympy as smp

import numpy as np

import scipy as sp

import matplotlib.pyplot as plt

from sympy import solve ,symbols ,Eq ,I,conjugate ,expand ,Abs ,

lambdify ,simplify ,factor

from mpl_toolkits.mplot3d

import Axes3D from scipy.interpolate

import griddata

To initiate the system, the first step involves establishing the initial values, namely the

potential_list, and distance_list. The program itself is implemented as a user input
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program, offering various options to the user. Initially, the user is presented with a

choice between equal distances or non-equal distances, as well as equal potentials or

non-equal potentials. Furthermore, the user is prompted to input the value of k. With

these inputs at hand, we proceed to compute the ξ list. as shown in the below code:

These options allow for flexibility in defining the characteristics of the generated non-

linear multiple Dirac delta potentials.

potential_list = []

distance_list =[]

num_potential = int(input("Enter the number of potentials: "))

potential_types = input("choose between ’equal potentials ’ or ’

non equal potentials ’: ").lower()

distance_types=input("choose between ’equal distances ’ or ’non

equal distances ’: ").lower()

if potential_types == ’non equal potentials ’:

for i in range(num_potential):

value_of_potential = float(input("Enter the value of

potential {}: ".format(i+1)))

potential_list.append(value_of_potential)

elif potential_types == ’equal potentials ’:

value_of_potential = float(input("Enter the value of potential

: "))

potential_list = [value_of_potential] * num_potential

else:

print("Invalid potential types!")

if distance_types ==’non equal distances ’:

for i in range(num_potential -1):

value_of_distance=float(input("Enter the value of distance

{}: ".format(i+1)))

distance_list.append(value_of_distance)
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elif distance_types ==’equal distances ’:

value_of_distance = float(input("Enter the value of distance:

"))

distance_list = [value_of_distance] * int(( num_potential -1))

else:

print("Invalid distance types!")

def divide_list_elements(lst , divisor):

new_lst = [num / divisor for num in lst]

return new_lst

k = int(input("enter value of k: "))

kisi_f = divide_list_elements(potential_list ,k)
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Chapter 4

WAVE FUNCTIONS AND THE DERIVATIVES OF WAVE

FUNCTIONS

Once you have selected your preferred option and set the initial values, such as ξ and

distances, the code will initiate by providing you with a list of general wave functions

and their corresponding derivatives as functions of y. You can observe this in the

following code:

#Algebric approach for wave functions and the derivatives of wave

functions

A = [smp.symbols("a{}".format(i)) for i in range(1, num_potential

+ 2)]

B = [smp.symbols("b{}".format(i)) for i in range(1, num_potential

+ 2)]

t, r,y=smp.symbols("t r y")

B[0] = r

A[0] = 1

B[num_potential] = 0

A[num_potential] = t

psi_y = [A[i] * smp.exp(1j*y) + B[i] * smp.exp(-1j* y) for i in

range(num_potential +1)]

print("wave functions in our system is as followes:")

print(psi_y)

dpsi_y = []

for i in range(num_potential + 1):

derivative = smp.diff(psi_y[i],y)
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dpsi_y.append(derivative)

print("derivatives of wave functions are as followes:")

print(dpsi_y)

After the wave functions and their corresponding derivatives have been compiled into

a list, it becomes essential to apply the continuity boundary condition individually for

each distinct region, taking into account whether the distances are equal or non-equal.

The provided code demonstrates this particular procedure:

bc_eq1 =[]

privious_psi_y=psi_y [0]

for element in psi_y [1:]:

difference=element -privious_psi_y

bc_eq1.append(difference)

privious_psi_y=element

list_of_distances =[]

D_t=[smp.symbols("d_t{}".format(i)) for i in range(1,

num_potential )]

if distance_types ==’equal distances ’:

for i in range(num_potential):

y= y0 + n*d_t

result= y.subs ([(y0 ,y0_n) ,(n,i)])

list_of_distances.append(result)

elif distance_types ==’non equal distances ’:

list_of_distances = [y0_n] + [y0_n+ smp.Add(*D_t[:i]) for i

in range(1, num_potential)]

y = smp.symbols(’y’)

n = num_potential

y_symbols = smp.symbols(’y1:{}’.format(n + 1))

bc_eq1_indexed = [eq.subs(y, y_sym) for eq, y_sym in zip(bc_eq1 ,
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y_symbols)]

bc_eq1_n =[]

for i in range(len(list_of_distances)):

if distance_types ==’equal distances ’:

y_index1 = i + 1

y_value1 = list_of_distances[i]

bc_eq1_n.append(bc_eq1_indexed[i].subs(f’y{y_index1}’,

y_value1))

elif distance_types ==’non equal distances ’:

y_index1 = i + 1

y_value1 = list_of_distances[i]

bc_eq1_n.append(bc_eq1_indexed[i].subs(f’y{y_index1}’,

y_value1))

print(bc_eq1_n)

We follow a similar procedure to design the boundary condition for the derivative of

wave functions at each region, as shown in the code below:

bc_eq2 = []

previous_dpsi_y = dpsi_y [0]

previous_psi_y2 = psi_y [1]

for i in range(1, len(dpsi_y)):

if potential_types == ’equal potentials ’:

kisi=smp.symbols("kisi")

current_dpsi_y = dpsi_y[i]

current_psi_y = psi_y[i]

difference = current_dpsi_y - previous_dpsi_y + (kisi) *

current_psi_y

bc_eq2.append(difference)

previous_dpsi_y = current_dpsi_y
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previous_psi_y2 = current_psi_y

elif potential_types == ’non equal potentials ’:

kisi_list = [smp.symbols("kisi{}".format(i)) for i in

range(1, num_potential +1)]

kisi=smp.symbols("kisi")

current_dpsi_y = dpsi_y[i]

current_psi_y = psi_y[i]

difference = current_dpsi_y - previous_dpsi_y + kisi_list[

i-1] * current_psi_y

bc_eq2.append(difference)

previous_dpsi_y = current_dpsi_y

previous_psi_y2 = current_psi_y

print(bc_eq2)

y = smp.symbols(’y’)

n = num_potential

y_symbols = smp.symbols(’y1:{}’.format(n + 1))

bc_eq2_indexed = [eq.subs(y, y_sym) for eq, y_sym in zip(bc_eq2 ,

y_symbols)]

print(bc_eq2_indexed )

bc_eq2_n= []

for i in range(len(list_of_distances)):

if distance_types ==’equal distances ’:

y_index = i + 1

y_value = list_of_distances[i]

bc_eq2_n.append(bc_eq2_indexed[i].subs(f’y{y_index}’,

y_value))

elif distance_types ==’non equal distances ’:

y_index = i + 1

y_value = list_of_distances[i]

bc_eq2_n.append(bc_eq2_indexed[i].subs(f’y{y_index}’,

y_value))
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print(bc_eq2_n)

4.1 Reflection and Transmission coefficient

Now that we have symbolically defined the boundary conditions for any variation our

user may request, and we have obtained the initial values of ξ and distances, the next

step is to import these values and construct a system of equations. Once the system is

formed, we can proceed to solve it effectively as follows:

if distance_types ==’non equal distances ’:

new_list = [expr.subs(zip(D_t , distance_list)) for expr in

bc_eq1_n]

elif distance_types ==’equal distances ’:

distance_list_sympy = [smp.sympify(element) for element in

distance_list]

substitutions = [(d_t , value) for value in distance_list_sympy

]

new_list = [expr.subs(substitutions) for expr in bc_eq1_n]

if distance_types ==’non equal distances ’ and potential_types ==’

non equal potentials ’:

new_list2 = [expr.subs(zip(kisi_list , kisi_f)) for expr in

bc_eq2_n]

new_list3 =[expr.subs(zip(D_t , distance_list)) for expr in

new_list2]

elif distance_types ==’equal distances ’ and potential_types ==’non

equal potentials ’:

distance_list_sympy = [smp.sympify(element) for element in

distance_list]

substitutions = [(d_t , value) for value in distance_list_sympy

]

new_list2 = [expr.subs(substitutions) for expr in bc_eq2_n]

12



new_list3 = [expr.subs(zip(kisi_list , kisi_f)) for expr in

new_list2]

elif distance_types ==’non equal distances ’ and potential_types ==

’equal potentials ’:

potential_list_sympy = [smp.sympify(element) for element in

kisi_f]

substitutions = [(kisi , value) for value in

potential_list_sympy]

new_list2 = [expr.subs(substitutions) for expr in bc_eq2_n]

new_list3 =[expr.subs(zip(D_t , distance_list)) for expr in

new_list2]

elif distance_types ==’equal distances ’ and potential_types ==’

equal potentials ’:

distance_list_sympy = [smp.sympify(element) for element in

distance_list]

substitutions = [(d_t , value) for value in distance_list_sympy

]

new_list2 = [expr.subs(substitutions) for expr in bc_eq2_n]

potential_list_sympy = [smp.sympify(element) for element in

kisi_f]

substitutions = [(kisi , value) for value in

potential_list_sympy]

new_list3 = [expr.subs(substitutions) for expr in new_list2]

system_of_equations = [Eq(eq, 0) for eq in (new_list + new_list3)

]

print(system_of_equations)

symbols_list = list(set().union (*[eq.free_symbols for eq in

system_of_equations ]))

solution = solve(system_of_equations , symbols_list)

symbol_values = {symbol: value for symbol , value in solution.

items()}
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print("Assigned Values:")

for symbol , value in symbol_values.items():

print(f"{symbol }: {value}")

functions = {}

for symbol , value in symbol_values.items():

func = smp.lambdify ([], value)

functions[symbol] = func

r_value = functions[r]()

t_value=functions[t]()

ai=[]

bi=[]

for i in range(2, num_potential +1):

a_value = functions[A[i -1]]()

ai.append(a_value)

b_value = functions[B[i -1]]()

bi.append(b_value)

print(f"a{i} value: {a_value}")

print(f"b{i} value: {b_value}")

Once the solutions for each coefficient in every region have been obtained, allowing

for user-defined variations in the wave functions, and the reflection and transmission

coefficients have been evaluated, the next step is to analyze the probability invariance.

Additionally, you can assign the coefficients to the wave functions to calculate their

conjugates as well as the absolute value of the wave functions. The code below

illustrates how to perform these tasks:

probability_invariance=Abs(t_value)**2+ Abs(r_value)**2

print(probability_invariance)

substituted_psi_y = []
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for expr in psi_y:

substituted_expr = expr.subs({’r’: r_value , ’t’: t_value })

for i in range(0,num_potential -1):

substituted_expr = substituted_expr.subs({A[i+1]: ai[i],B

[i+1]: bi[i]})

substituted_psi_y.append(substituted_expr)

print(substituted_psi_y)

conjugate_psi_y1 = [conjugate(expr) for expr in substituted_psi_y

]

conjugate_psi_y = [expr.subs(conjugate(y), y) for expr in

conjugate_psi_y1]

print(conjugate_psi_y)

psi_y_square = [expand(expr1 * expr2) for expr1 , expr2 in zip(

substituted_psi_y , conjugate_psi_y)]

abs_psi_y_square = [Abs(expr).rewrite(Abs) for expr in

psi_y_square]

print(abs_psi_y_square)
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Chapter 5

DATA VISUALIZATION AND DATA ANALYSIS

In this section, we will divide our code into four parts to create different plots and

visualize the behavior of the system with multiple Dirac delta potentials. Firstly, we

will modify the code to generate plots for the wave functions and their absolute values

with respect to their region distances. Next, we will create plots for the transmission

and reflection coefficients, considering both their regional distances and their

corresponding energies.

5.1 Equal distances and Equal potentials

Initially, we proceed with code modification to create a plot depicting the wave

function concerning the distances, assuming both the distances and potentials are

equally spaced:

if potential_types == ’equal potentials ’and distance_types == ’

equal distances ’:

lambdified_psi_y_functions = [lambdify(y, func) for func in

substituted_psi_y]

l = num_potential -1 # Define the value of n

range_of_graph = [] # Initialize an empty list to store the

ranges

start = y0_n - (10 * value_of_distance)

end = y0_n

range_of_graph.append ((start , end)) # Add the first range

for i in range(l):

start = y0_n + (i * value_of_distance)
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end = y0_n + ((i+1) * value_of_distance)

range_of_graph.append ((start , end))

end = y0_n + ((l + 10) * value_of_distance)

range_of_graph.append ((y0_n + (l * value_of_distance), end))

# Add the last range

print(range_of_graph)

plt.figure (1)

for i, func in enumerate(lambdified_psi_y_functions):

y_vals = np.linspace(range_of_graph[i][0], range_of_graph[

i][1], 1000)

f_vals = np.real(func(y_vals))

plt.plot(y_vals , f_vals , label=str(substituted_psi_y [i]))

plt.xlabel(’y’)

plt.ylabel(’psi_y ’)

plt.title(’Plot of wave function ’)

lambdified_abs_psi_y_square = [lambdify(y, func) for func in

abs_psi_y_square]

m = num_potential - 1

range_of_graph1 = []

start1 = y0_n - (10 * value_of_distance)

end1 = y0_n

range_of_graph1.append ((start1 , end1))

for i in range(m):

start1 = y0_n + (i * value_of_distance)

end1 = y0_n + ((i + 1) * value_of_distance)

range_of_graph1.append ((start1 , end1))

end1 = y0_n + ((m + 10) * value_of_distance)

range_of_graph1.append ((y0_n + (m * value_of_distance), end1))

plt.figure (2)

for i, func in enumerate(lambdified_abs_psi_y_square):
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y_vals1 = np.linspace(range_of_graph1[i][0],

range_of_graph1[i][1], 1000)

f_vals1 = np.vectorize(func)(y_vals1)

plt.plot(y_vals1 , np.real(f_vals1), label=str(

abs_psi_y_square[i]))

plt.xlabel(’y’)

plt.ylabel(’psi_y_square ’)

plt.title(’Plot of abs wave function square ’)

plt.grid(True)

plt.show()

Let’s take multiple specific examples and examine various scenarios involving different

values of the variable ξ and distances

5.2 Data visualization and Data analysis for n = 4, Ṽ0 = 1, d = 1 and

k = 1

Once the initial values are input into the given code, the following steps are carried out

Generation of Wavefunction and First Derivatives: By using sympy library, the code

generates the list of wavefunctions and its first derivatives as shown below:

ψ1(y) = exp(iy)+ r exp(−iy) (5.1)

dψ1

dy
= iexp(iy)− ir exp(−iy) (5.2)

ψ2(y) = a2 exp(iy)+b2 exp(−iy) (5.3)

dψ2

dy
= ia2 exp(iy)− ib2 exp(−iy) (5.4)

ψ3(y) = a3 exp(iy)+b3 exp(−iy) (5.5)

dψ3

dy
= ia3 exp(iy)− ib3 exp(−iy) (5.6)

ψ4(y) = a4 exp(iy)+b4 exp(−iy) (5.7)
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dψ4

dy
= ia4 exp(iy)− ib4 exp(−iy) (5.8)

ψ5(y) = t exp(iy) (5.9)

dψ5

dy
= it exp(iy) (5.10)

Solving the System of Equations: by assigning equations from in to the boundary

conditions The code proceeds to solve the system of equations to determine the

coefficients, as well as the reflection and transmission coefficients as shown below:

a2 = 1.00493843116683+0.386972112079938i (5.11)

a3 = 0.623857433460731+0.757078206280336i (5.12)

a4 = 0.299276671335977+1.047107929606i (5.13)

b2 =−0.23099420700695−0.39684897441359i (5.14)

b3 =−0.0530433395616452+0.10368547650104i (5.15)

b4 =−0.484698702505869+0.0476180243087344i (5.16)

r =−0.226055775840124−0.00987686233365196i (5.17)

t =−0.179421834773618+0.957397012219189i (5.18)

These coefficients play a crucial role in describing how the wavefunction behaves

through the system .After finding the coefficients, the code applies these values to the

wavefunction to obtain the complete solution that takes into account the interactions

and behaviors of the wavefunction in each region. Data visualization: Using the

solutions obtained, the code generates plots that showcase the behavior of the

wavefunction within the various regions. These plots visually represent how the

wavefunction evolves over the distances in each region, providing valuable insights
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into the physical interpretation of the system under different scenarios. The code

creates additional plots that display the transmission and reflection probabilities with

respect to their respective distances. These plots provide a clear visualization of how

these coefficients change throughout the system, offering a deeper understanding of

the wave’s behavior at boundaries and interfaces. Lastly, the code generates plots that

show how the transmission and reflection probabilities vary concerning the variable ξ

and distances. This analysis helps to explore how different values of ξ influence the

transmission and reflection phenomena, shedding light on the system’s sensitivity to

changes in this variable.

Figure 5.1: In the context of this system, the wave functions and the absolute value of
wave functions that have not undergone normalization are examined concerning their
variations concerning regional distances for n = 4,Ṽ0 = 1,d = 1 and k = 1. In this
plot, it is evident that the wave function at the boundary fulfills the expected continuity
conditions also from the the absolute value of the wavefunction we can compare the
probability distribution within the system.

Figure 5.2: The transmission and reflection probability functions have been plotted as
functions of distance within the system for n = 4,Ṽ0 = 1,d = 1 and k = 1 and the plot
demonstrates that the summation of probabilities always remains equal to 1.
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Figure 5.3: The plot of transmission and reflection probabilities as a function of ξ

and distance reveals interesting observations. Specifically, for d = 1 and ξ = 0,
the reflection coefficient is 0, and the transmission coefficient is 1, as expected.
Furthermore, as ξ approaches 4, both the reflection and transmission probabilities tend
to be zero.

Transmission and reflection coefficient: Moreover, the code has the capability to

symbolically generate the solutions for the transmission and reflection coefficients,

which are represented as follows:

t =
−16

λ +η
(5.19)

r =
α +β

λ +η
(5.20)

λ = ξ
4(3e2id−3e4id + e6id−1)+4iξ 3(3e2id− e6id−2) (5.21)

η = 4ξ
2(−3e2id−2e4id− e6id +6)+32iξ −16 (5.22)

α = ξ
4(−3e2id +3e4id− e6id +1)+6iξ 3(−e2id− e4id + e6id +1) (5.23)

β = 4ξ
2(−e2id + e4id +3e6id−3)−8iξ (e2id + e4id + e6id +1) (5.24)
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5.2.1 Data visualization and Data analysis for n = 4, Ṽ0 = 1, d = 2 and k = 1

Equations 5.25 and 5.26 represent reflection and transmission coefficient:
r = 0.471896745237825+0.473958619723303i (5.25)

t =−0.652402684313879+0.356437127869662i (5.26)

Figure 5.4: This figure illustrates the wave function and its squared absolute value. By
comparing it to Figure 5.1, we observe that increasing the distance of each potential
by a factor of two leads to a greater oscillation, as anticipated.

Figure 5.5: The figure displays the transmission and reflection probability as functions
of distances and ξ . A comparison with Figure 5.3 reveals that when the distance is
doubled, both the transmission and reflection probability decay more rapidly with an
increase in ξ .
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5.2.2 Data visualization and Data analysis for n = 4, Ṽ0 = 2, d = 1 and k = 1

Equations 5.27 and 5.28 represent reflection and transmission coefficient :

r =−0.224960026676688+0.665143015537305i (5.27)

t =−0.635548605273626−0.321022936274516i (5.28)

Figure 5.6: This figure shows the wave function and the absolute value of the wave
function squared. By comparing it with Figure 5.1, we see that the amplitude of the
absolute wave function will decrease.

Figure 5.7: The figure depicts the transmission and reflection probabilities as functions
of distances and ξ . When compared to Figure 5.2, we observe a significant increase in
amplitude, such that at certain distances, the probability of reflection can either reach
1 or 0, similar to the transmission probability.
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5.2.3 Data visualization and Data analysis for n = 4, Ṽ0 = 1, d = 1, and k = 2

Equations 5.29 and 5.30 represent some equations:

r =−0.177415895619637+0.176012004235319i (5.29)

t = 0.578115913901493+0.776740216829533i (5.30)

Figure 5.8: Figure of wave function and their absolute value for n = 4, Ṽ0 = 1, d = 1,
and k = 2.

Figure 5.9: The figure depicts the transmission and reflection probabilities as functions
of distances and ξ . When compared to Figure 5.7, we can observe decreasing in the
amplitude of transmission and reflection probability.

5.2.4 Data visualization and Data analysis for n = 4, Ṽ0 =−2, d = 1 and k = 1

Equations 5.31 and 5.32 represent coefficient of reflection and transmission :

r =−0.63886367234195−0.7666483547201i (5.31)
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t =−0.0545062190644411+0.0336538326200937i (5.32)

Figure 5.10: Figure of regional wave function and their absolute value for n = 4, Ṽ0 =
−2, d = 1, and k = 1.

Figure 5.11: As ξ is reduced, the likelihood of transmission decreases, and
simultaneously, the probability of reflection increases.

5.2.5 Data visualization and Data analysis forn = 4, Ṽ0 = 1, d = 1 and k =−2

Equations 5.33 and 5.34 represent coefficient of reflection and transmission:

r = 0.0906937616349323+0.0279841779448918i (5.33)

t = 0.424810032390065−0.900293265422999i (5.34)

25



Figure 5.12: Figure of regional wavefunctions and the absolute value of wave function
square for k=-2.

Figure 5.13: From this figure we can see as the ξ increase from -0.5 to 0 transmission
probability will decrease and reflection will increase rapidly

5.3 Equal distances and non equal potentials

Through code modification as shown below, we can introduce impurities in the

potential strengths, enabling the exploration of a system. By considering these

impurities, we have the opportunity to plot the wavefunctions, their absolute values

squared, as well as the transmission and reflection probabilities. This approach allows

for a comprehensive analysis of the system’s behavior under the existence of

impurities.
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elif potential_types == ’non equal potentials ’and distance_types

== ’equal distances ’:

#graph of psi_y and psi_y_square

lambdified_psi_y_functions = [lambdify(y, func) for func in

substituted_psi_y]

l = num_potential -1 # Define the value of n

range_of_graph = [] # Initialize an empty list to store the

ranges

start = y0_n - (10 * value_of_distance)

end = y0_n

range_of_graph.append ((start , end)) # Add the first range

for i in range(l):

start = y0_n + (i * value_of_distance)

end = y0_n + ((i+1) * value_of_distance)

range_of_graph.append ((start , end))

end = y0_n + ((l + 10) * value_of_distance)

range_of_graph.append ((y0_n + (l * value_of_distance), end))

# Add the last range

print(range_of_graph)

plt.figure (1)

for i, func in enumerate(lambdified_psi_y_functions):

y_vals = np.linspace(range_of_graph[i][0], range_of_graph

[i][1], 1000)

f_vals = np.real(func(y_vals))

plt.plot(y_vals , f_vals , label=str(substituted_psi_y [i])

)

plt.xlabel(’y’)

plt.ylabel(’psi_y ’)

plt.title(’Plot of wave function ’)

lambdified_abs_psi_y_square = [lambdify(y, func) for func in

abs_psi_y_square]

m = num_potential - 1

range_of_graph1 = []

start1 = y0_n - (10 * value_of_distance)

end1 = y0_n
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range_of_graph1.append ((start1 , end1))

for i in range(m):

start1 = y0_n + (i * value_of_distance)

end1 = y0_n + ((i + 1) * value_of_distance)

range_of_graph1.append ((start1 , end1))

end1 = y0_n + ((m + 10) * value_of_distance)

range_of_graph1.append ((y0_n + (m * value_of_distance), end1)

)

plt.figure (2)

for i, func in enumerate(lambdified_abs_psi_y_square):

y_vals1 = np.linspace(range_of_graph1[i][0],

range_of_graph1[i][1], 1000)

f_vals1 = np.vectorize(func)(y_vals1)

plt.plot(y_vals1 , np.real(f_vals1), label=str(

abs_psi_y_square[i]))

plt.xlabel(’y’)

plt.ylabel(’psi_y_square ’)

plt.title(’Plot of abs wave function square ’)

plt.grid(True)

plt.show()

# Define the equations

system_of_equations_algebric = [Eq(eq, 0) for eq in (bc_eq1_n

+ bc_eq2_n)]

system_of_equations_algebric1 = [eq.subs({ symbol: value for

symbol ,

value in zip(kisi_list , kisi_f)}) for eq in

system_of_equations_algebric]

symbols_list_algebric = list(set().union (*[eq.free_symbols

for eq in

system_of_equations_algebric1 ]))

# Solve the system of equations

solution_algebric = smp.solve(system_of_equations_algebric1 ,

symbols_list)

symbol_values_algebric = {symbol: value for symbol , value in

solution_algebric.items ()}
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print(symbol_values_algebric)

r_value_algebric = symbol_values_algebric[r]

t_value_algebric = symbol_values_algebric[t]

r_func = lambdify ((d_t), r_value_algebric , modules=’numpy’)

t_func = lambdify ((d_t), t_value_algebric , modules=’numpy’)

d_t_values2=np.linspace (0 ,10 ,1000)

# Calculate the absolute square of r and t for the fixed kisi

abs_r_product_kisi_list = np.abs(r_func(d_t_values2) * np.

conj(r_func(d_t_values2)))

abs_t_square_kisi_list = np.abs(t_func(d_t_values2) * np.conj

(t_func(d_t_values2)))

# Plot the 2D graph for the fixed kisi

fig , ax = plt.subplots(figsize =(8, 6))

ax.plot(d_t_values2 , abs_r_product_kisi_list , label=’|r|^2’)

ax.plot(d_t_values2 , abs_t_square_kisi_list , label=’|t|^2’)

ax.set_xlabel(’d_t’)

ax.set_ylabel(’Magnitude ’)

ax.set_title(’Absolute square of r and t for kisi = {}’.

format(kisi_f))

ax.legend ()

plt.show()

In the subsequent instances, we will examine specific examples of these impurities,

considering various scenarios to explore the effects on the system. These examples

will help us gain a deeper understanding of the implications of different impurity

configurations on the wavefunctions, absolute values squared, and transmission and

reflection probabilities within the non-linear system.

5.3.1 Data visualization and Data analysis for n = 8, Ṽ1 = 1, Ṽ2 = 1, Ṽ3 = 1, Ṽ4 = 1,

Ṽ5 = 2, Ṽ6 = 1, Ṽ7 = 1, Ṽ8 = 1, d = 1 and k = 1

Utilizing the above code and considering the initial values provided earlier, we

obtained the transmission and reflection coefficients for the system with impurities.
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The results for these coefficients are presented below.

r =−0.202133102733224+0.383354052275485i (5.35)

t =−0.605754596686556−0.66726550036437i (5.36)

Figure 5.14: Regional wave function and the absolute value of wave function square
under impurity case

Figure 5.15: The observation made in this context is that a minor impurity on the fifth
potential has a significant impact on the overall system probabilities
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5.3.2 Data visualization and Data analysis for n = 8, Ṽ1 = 1, Ṽ2 = 1, Ṽ3 = 1, Ṽ4 = 1,

Ṽ5 =−2, Ṽ6 = 1, Ṽ7 = 1, Ṽ8 = 1, d = 1 and k = 1

for such cases, the code provides the following value for transmission and reflection

coefficients

r =−0.800336145380984+0.270977654995426i (5.37)

t =−0.493024386207782+0.207268230788822i (5.38)

Figure 5.16: Regional wave function and the absolute value of wave function square
under impurity case

Figure 5.17: By comparing the graph in Figure 5.15, it becomes apparent that only
by changing the sign of k, we observe tremendous change in the transmission and
reflection probabilities.
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5.3.3 Data visualization and Data analysis for n = 8, Ṽ1 = 1, Ṽ2 = 1, Ṽ3 = 1, Ṽ4 = 1,

Ṽ5 = 2, Ṽ6 = 1, Ṽ7 = 1, Ṽ8 = 1, d = 1 and k = 2

for such cases, the code provides the following value for transmission and reflection

coefficients

r = 0.223159115204081+0.0196202694529155i (5.39)

t =−0.490044752768376+0.842419844621497i (5.40)

Figure 5.18: Regional wave function and the absolute value of wave function square
under impurity case

Figure 5.19: Upon comparing with Figure 5.15, we observe that increasing k results in
a reduction of the amplitude of transmission and reflection probabilities.
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5.3.4 Data visualization and Data analysis for n = 8, Ṽ1 = 1, Ṽ2 = 1, Ṽ3 = 1, Ṽ4 = 1,

Ṽ5 =−2, Ṽ6 = 1, Ṽ7 = 1, Ṽ8 = 1, d = 1 and k =−0.5

In our final example of the impurities case, we examined a combination in which the

value of ξ became greater than 1. The code generated the reflection and transmission

coefficients as follows:

r = 0.185344845895648+0.960348833223816i (5.41)

t = 0.196354344598363−0.069443343690528i (5.42)

Figure 5.20: Regional wave function and the absolute value of wave function square
under impurity case

Figure 5.21: Upon comparing this plot with the rest of the graphs, it is evident that the
amplitude decreases rapidly as ξ increases. As ξ approaches infinity, the transmission
probability tends to 0, while the reflection probability becomes 1.
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5.4 Non-equal distances and Non-equal potentials

In this section, we extend the generality of our system by further modifying the code.

We consider scenarios where distances and potentials are not constrained to be equal.

By relaxing these constraints, we explore a more diverse range of possibilities within

the system. Despite these variations, we are still able to calculate the transmission

and reflection coefficients, allowing us to gain a comprehensive understanding of the

system’s behavior under more general conditions.

else:

# Define the equations

system_of_equations_algebric = [Eq(eq, 0) for eq in (bc_eq1_n

+ bc_eq2_n)]

symbols_list_algebric = list(set().union (*[eq.free_symbols

for eq in system_of_equations_algebric ]))

# Solve the system of equations

solution_algebric = smp.solve(system_of_equations_algebric ,

symbols_list)

symbol_values_algebric = {symbol: value for symbol , value in

solution_algebric.items ()}

print(symbol_values_algebric)

r_value_algebric = symbol_values_algebric[r]

t_value_algebric = symbol_values_algebric[t]

Now let’s consider some examples for this specific case imagine we consider a system

of 3 potentials with the strength of Ṽ1 = 1,Ṽ2 = 2,Ṽ3 = 3 and d1 = 1,d2 = 2 and k = 1

the coefficient of transmission and reflection are as followed:

r = 0.44765413320866−0.799041236786126i (5.43)

t =−0.305274111412524+0.260665678288869i (5.44)

on the other hand the symbolic answer for transmission coefficient is as follows:
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t3 =
−8i

γ +ω
(5.45)

γ = ξ1ξ2ξ3(e2i(d1−2+d2−3)− e2id1−2− e2id2−3 +1)+2iξ1ξ2(1− e2id1−2) (5.46)

ω = 2iξ1ξ3(1− e2i(d1−2+d2−3))+2iξ2ξ3(1− e2id2−3)−4(ξ1 +ξ2 +ξ3)−8i (5.47)

also we can see for Ṽ1 = 1,Ṽ2 =−2, and d1 = 1 and k = 2

r = 0.288273992003145+0.45235738801617i (5.48)

t = 0.288273992003145+0.45235738801617i (5.49)

t =
4

ξ1ζ2(e2id1−1)−2i(ξ1 +ξ2)+4
(5.50)

The code allows users to input a wide range of variational values, enabling the

simulation of diverse scenarios with any desired number of potentials.

35



Chapter 6

CONCLUSION

In this project, we embarked on an exploration of the one-dimensional form of

multiple Dirac delta potentials, employing simulations to unravel the intricate

behavior of the system. The Schrödinger equation governing the dynamics of the

particles was transformed into a dimensionless representation, allowing us to delve

deep into the study of scattering problems. A focal point of our investigation was the

renowned Kronig-Penney model, an exemplary system widely employed in studying

scattering phenomena. By analyzing and simulating this system, we aimed to gain

invaluable insights into the broader implications and applications of multiple Dirac

delta potentials in quantum mechanics. To facilitate our research, we design an

implementation of a user interface program using the versatile Python programming

language. The program was crafted to design a system governed by multiple delta

Dirac potentials. With this user-friendly tool, we seamlessly generated and analyzed

wave functions arising from incident and outgoing waves. In order to ensure the

accuracy of our system, we imposed boundary conditions at every point along the

potential. These boundary conditions played a crucial role in capturing the true

essence of the scattering process. Through rigorous computations, we obtained

essential physical parameters, including transmission and reflection coefficients,

regional wave functions and etc. The implications of our findings were profound. Not

only did we achieve a better understanding of the scattering problem within the

context of multiple Dirac delta potentials, but we also advanced our knowledge of
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how these potentials impact the scattering behavior of particles. In conclusion, our

thesis represents a significant contribution to the study of scattering phenomena in

quantum mechanics, particularly in the context of impurities in one-dimensional

systems with multiple delta Dirac potentials. The development of the Python-based

user interface program further enhances the accessibility and accuracy of analyzing

and visualizing such systems. As we progress in our understanding of quantum

mechanics, the knowledge gained from this research paves the way for future

advancements and applications in various scientific and technological domains.
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