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Introduction 
 

 
You are highly recommended to read this manual very carefully! 

 

1.1 Sources of Error in Measurement  
 

1.1.1 Does Every Measurement Have an Error? 
It is noteworthy to mention that not every measurement has an error. Consider the case when 
you wish to determine the number of students in the class. This can easily be achieved via 
counting, without any error. However, if we wish to determine the number of oxygen molecules 
in the room, it is no longer possible to count them. In this case, the number can be estimated 
with an uncertainty. This uncertainty determines the measurement accuracy. 
 

1.1.2 Uncertainty versus Error 
 

 
 
The concept uncertainty plays a vital rule during practical sessions. Thus, you must make sure 
that you understand it well! For this reason, let us start with a simple example. Imagine you are 
asked to take a measurement via using a meter ruler. Once you take your data, you must be 
confident about how to record it.  
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Assume that you have measured the length to be 25.1 cm. Even though you may ‘somehow’ 
convince yourself that this is one true measurement, you cannot claim that it is 100% accurate.  
 
You must be aware of the terms uncertainty and error, alongside with their differences.  They 
may sound like the same thing, but they actually are not! What makes this discussion even 
more interesting is once the word mistake is involved within the subject. 
 
Your teaching assistants have been hearing these kind of questions very frequently during the 
lab sessions: "I have done no mistakes today, but my percentage error has a non-zero value. I 
am sure I have done everything right!!! So is this logical?" The answer is no!! It indeed has no 
logical sense. Errors can be thought as a concept that has to exist whenever you are taking a 
measurement, no matter whether you wish it to be there or not, whereas the mistakes are 
dependent on the individual himself. You are able to control the mistakes; however, the errors 
are unavoidable! 
 
And what about the uncertainty? Uncertainty stands for the methodology of manifesting 
errors. If you can manage to minimize the errors, it will in turn have an effect on the 
uncertainty. As we have already pointed out, errors should not be considered as mistakes. Yet, 
they must exist!  Reading the list below may help you to understand why it is so. 
 
There are a variety of reasons why errors arise. Some of these are listed below. 
 
Human Error 
Whilst taking a measurement, you may all claim you have observed something slightly 
different. You are all carrying out the experiments as good as you can, or scientifically 
speaking, up to a certain level of accuracy.  The measuring techniques may vary from observer 
to observer. Therefore, to sum up, this type of error may occur because of being unexperienced 
or choosing a less accurate way of taking the concerned measurement. 
 
Instrumental Limitations on the Devices 
There exist calibrations of finite width. Each device has its own limitation. It is not possible to 
measure the length of a substance and record it as 5.16472847294728947204 cm, by using a 
ruler.  
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Errors Due to External Influences 
If your system is not isolated well while you are carrying out an experiment to find specific 
heat capacity of a substance, some heat will be lost to the surroundings and this will make your 
reading less accurate. This is an example of an external influence. 
 
Parallax Error 
Just by examining the meaning of the word parallax, we can understand how this error arises.   
Parallax means alteration, hence the observations will be dependent on the angle of 
observation. This error can be minimized via experience.  
 

 
 
The correct position to take the measurement in the figure above is position B. Try to take your 
measurements perpendicular to the observation point.  
 
 

1.2 Significant Figures, Rounding, and Uncertainty 
 

1.2.1 Significant Figures 
 

Basic Rule: Non-zero digits are always significant. Any zeros except for at the beginning are 
significant. 

 
Some Examples 

 
26.380   5 significant figures 
7.94    3 significant figures 

0.00980  3 significant figures 
 
The last number can be stated in scientific notation as 9.80 x 10-3. 
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1.2.2 Rounding Numbers 
To keep the correct number of significant figures, numbers must be rounded off. The discarded 
digit is called the remainder. There are three rules for rounding: 
 
Rule 1: If the remainder is less than 5, drop the last digit. 
Rounding to one decimal place: 5.346→5.3 
 
Rule 2: If the remainder is greater than 5, increase the final digit by 1. 
Rounding to one decimal place: 5.798→5.8 
 
Rule 3: If the remainder is exactly 5 then round the last digit to the closest even number. This 
is to prevent rounding bias. Remainders from 1 to 5 are rounded down half the time and 
remainders from 6 to 10 are rounded up the other half. 
Rounding to one decimal place: 3.55→3.6, also 3.65→3.6. 
 

1.2.3 Uncertainty in Measurement 
 

 
Every measurement apparatus has a limitation in precision. A Voltmeter with 4 digits cannot 
measure up to a precision of 5 digits. Other factors, as previously explained, may as well 
influence the measurement. The uncertainty of a quantity � is denoted by ∆�. 
 
Every measurement reading is written together with its uncertainty in the following form. 
 

(� ± ∆�) ���� 
 
Absolute and Relative Uncertainty 
 
Absolute uncertainty: 3.52 ± 0.03 ��. 
 
Relative uncertainty: 3.52 �� ± 1%. Note that relative uncertainty was found via evaluating 
0.03/3.52 × 100 %.  
 
Important Remark: You are expected to display uncertainties to two significant figures 
during the lab sessions. Having done so, you must adjust your result in such a way to have the 
same number of decimal places as the uncertainty.  
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Let us give you an example on how to follow this procedure. 
 
Example 
You have taken a measurement for a quantity together with its uncertainty and wrote that 
 

� = 3.2 �� 
∆� = 0.05 ��. 

 
How should you record this measurement on your spreadsheet? 
 
Step#1: Rewrite the uncertainty to two significant figures, i.e. ∆� = 0.050 ��. 
 
Step#2: Quote your result in a way that its decimal places match the one for the uncertainty, 
i.e. � = 3.200 ��. 
 
Step#3: Finalize your answer as follows. 
 

� = (3.200 ± 0.050) �� 
 
1.2.4 Practice Questions 
 
Rewrite the following measurements and their uncertainties in the format you are taught 
throughout this manual. 

 
1) � = 5.0 cm, ∆� = 0.01 ��. 
 
 
 
 
 
 
 

2) � = 10.42 �/��, ∆�= 1.80
�

��
. 

 
 
 
 
 
 
 

3) � = 42.30 �/�, ∆�= 4.3
�

�
. 
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1.3 Some Basic Statistics                                                           
 

1.3.1 Mean  
 
Example 
If you have repeated a measurement five times and have observed them as 5 cm, 6 cm, 5 cm, 
8 cm and 6 cm respectively, the most precise way of representing your measured value is 
finding the average value, i.e. the mean value. This can be achieved as follows.  
 

�̅ =
5 + 6 + 5 + 8 + 6

5
= 6 

 
Increasing the number of measurements always provides us with a higher accuracy and our 
final result in turn becomes more reliable.  

 
1.3.2 Variance   
The variance represents a measure of how the data distributes itself about the mean or the 
expected value.  While evaluating the variance, there is an important point to be considered. 
 

 
where �� and �� represent population and sample variance, respectively. 

 
1.3.3 Gaussian Distribution    
If only random errors affect a measurement, it can be shown mathematically that in the limit 
of an infinite number of measurements, the distribution of values follows a normal distribution 
(i.e. the bell curve or the Gaussian distribution at the below). This distribution has a peak at the 

mean value ���� and a width given by the standard deviation �. 
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Obviously, we never take an infinite number of measurements. However, for a large number 
of measurements, say, N~10 or more, measurements may be approximately normally 
distributed. In that event we use the formulae below: 

Most of the time we will be using the formulae for small data sets. However, occasionally we 
perform experiments with enough data to compute a meaningful standard deviation. In those 
cases, one can take advantage of some computer packages for computing ���� and σ. 
 

1.4 Propagation of Uncertainties1 
 

Oftentimes we combine multiple values, each of which has an uncertainty, into a single 
equation. In fact, we do it when we measure something with a ruler. Take, for example, 

                                                
1 † Reference for the two tables in this section: University of Pennsylvania, Department of 
Physics & Astronomy, Lab Manual for Undergraduates.  
Note that throughout the second table provided from this source, the uncertainties are not quoted to 2 significant 
figures. However, this will not be the case for us! These examples are only provided for you to understand how 
to work on error propagation. 
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measuring the distance from a grasshopper's front legs to his hind legs. For rulers, we will 
assume that the uncertainty in all measurements is one-half of the smallest spacing. 

The measured distance is where .  What is the 
uncertainty in ��? You might think that it is the sum of the uncertainties in � and �; namely: 

.  

However, statistics tells us that if the uncertainties are independent of one another, the 
uncertainty in a sum or difference of two numbers is obtained by quadrature:  

 

The way these uncertainties combine depends on how the measured quantity is related to each 
value. Rules for how uncertainties propagate are given below. 

 

 

∆݀ ൌ ඥሺ∆ݔሻଶ ൅ ሺ∆ݕሻଶ ൌ 0.07cm.

∆݀ ൌ ݔ∆ ൅ ݕ∆ ൌ 0.1cm

݀m ൌ ݀ േ ∆݀   ݀ ൌ 4.63cm െ 1.0cm ൌ 3.63cm. 
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1.5 The Least Squares Line     
 

There are two possible approaches to determine the least squares line. Either we consider the 
square of the vertical distance between the measured points and the least square line or we 
consider the square perpendicular distance between the measured point and the least square 
line. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this manual, we mainly focus on the sum of the squares of the vertical distances between the 
best fit line. It is given by  

Sx,y  
i1

n

yi  mxi  c2 ,

 
where cmxy   denotes the best fit line. The problem of finding the coefficients  m  and  c  

is rather straight forward. We have to minimize the sum of the squares  yx,S  with respect to 

the coefficients  m  and c , using the straightforward method we have learned in the course of 

Calculus. To this end, we take the derivative of  yx,S  with respect to m  and c , and in sequel 

equate them to 0. This results in 
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Now, one must solve the above equations for m  and c . After dividing the both equations by 
2, we can rewrite the equations as following 
 

.0
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The above equations can be decoupled in one equation as follows: 
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The solution of the above equation can be obtained by using the Kramer’s rule: 
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which finally gives the deserved results for the slope m  and intercept c  as follows: 
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Experiment 1: Force Table 
 

 

 

 

 

 

 

 

   

EQUIPMENT NEEDED: Force Table, 3 pulleys and pulley clamps, 3 mass hangers, mass set, string, metric 

ruler, protractor, 2 sheets of paper. 

 

1- PROPOSE 

The purpose of this experiment is to use the force table to experimentally determine the force which balances 

two other forces. This result is checked by adding the two forces by using their components. 

2- THEORY 

This experiment finds the resultant of adding two vectors by two methods: experimentally and by components. 

(Some general details on adding vectors, specifically forces, will be given by the lab assistant). 

Note that in all cases, the force caused by the mass hanging over the pulley is found by multiplying the mass 

by the acceleration due to gravity. 

A- Experimental Method 
Two forces are applied on the force table by hanging masses over pulleys positioned at certain angles. Then 
the angle and mass hung over a third pulley are adjusted until it balances the other two forces. This third force 
is called the equilibrant (𝑭𝐸) since it is the force which establishes equilibrium. The equilibrant is not the same 
as the resultant (𝑭𝑅). The resultant is the addition of the two forces. While the equilibrant is equal in magnitude 
to the resultant, it is in the opposite direction because it balances the resultant (see Figure 1). So, the 
equilibrant is the negative of the resultant: 
 

−𝑭𝐸 = 𝑭𝑅 = 𝑭𝐴 + 𝑭𝐵 

 
Figure 1: Equilibrant balances the resultant. 
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Figure 2: Components 

B- Component Method 
Two forces are added together by adding the 𝑥- and 𝑦-components of the forces. First the two forces are 
broken into their 𝑥- and 𝑦-components using trigonometry: 𝑭𝐴 = 𝐴𝑥𝑖̂ + 𝐴𝑦𝑗 ̂and 𝑭𝐵 = 𝐵𝑥 𝑖̂ + 𝐵𝑦𝑗 ̂where 𝐴𝑥  is 

the x-component of vector 𝑭𝐴  and 𝑖 ̂is the unit vector in the x-direction (see Figure 2). To determine the sum of 
𝑭𝐴  and 𝑭𝐵, the components are added to get the components of the resultant 𝑭𝑅: 
 

𝑭𝑅 = (𝐴𝑥 + 𝐵𝑥)𝑖̂ + (𝐴𝑦 + 𝐵𝑦)𝑗̂ = 𝑅𝑥 𝑖̂ + 𝑅𝑦𝑗.̂ 

 
To complete the analysis, the resultant force must be in the form of a magnitude and a direction (angle). So, 
the components of the resultant (𝑅𝑥  and 𝑅𝑦  ) must be combined using the Pythagorean Theorem since the 

components are at right angles to each other: 
 

𝐹𝑅 = √𝑅𝑥
2 + 𝑅𝑦

2 

The angle is found with the help of trigonometry: 

𝑡𝑎𝑛𝜃 =
𝑅𝑦

𝑅𝑥
   ⟹    𝜃 = 𝑡𝑎𝑛−1(

𝑅𝑦

𝑅𝑥
)   

 

3- SETUP 

 

Figure 3: Force table 

1) Assemble the force table as shown in the Figure 3. Use three pulleys (two for the forces that will be added 

and one for the force that balances the sum of the two forces).  

2) Screw the center post up so that it will hold the ring in place when the masses are suspended from the two 

pulleys.  



3) Hang the following masses on two of the pulleys and clamp the pulleys at the given angles: Force A = 50 g at 

0˚ Force B = 100 g at 120˚. You may use the coordinate system shown in Figure 4. (Throughout the experiment 

take the magnitude of the gravitational acceleration as 𝒈 = 𝟗. 𝟖 𝒎 𝒔𝟐⁄ ) 

 

Figure 4: Coordinate system on the force table. 

4- ANALYSIS 
  
A) Application of Component Method 
Since Force A = 50g at 0˚ Force B = 100g at 120˚ (𝑔 = 9.8 𝑚 𝑠2⁄ ), to determine theoretically what mass 

should be suspended from the third pulley and at what angle, first calculate the magnitude and 

direction of the equilibrant (𝑭𝐸) by using the “component method”. To this end, you should record 

the vector components of Force A (𝑭𝐴)and Force B (𝑭𝐵) to the Table 1 and compute the magnitude 

and direction of the equilibrant. (Recall that the equilibrant is exactly opposite in direction to the 

resultant). 

𝑭𝐴 = − − − − − − 𝑖̂ + − − − − − − 𝑗̂ (𝑁) 𝐹𝑅 = √𝑅𝑥
2 + 𝑅𝑦

2 =? 

 
 𝑭𝐵 = − − − − − − 𝑖̂ + − − − − − − 𝑗̂ (𝑁) 

𝑭𝑅 = − − − − − − 𝑖̂ + − − − − − − 𝑗̂ (𝑁) 𝐹𝐸 =? 
 

𝑭𝐸 = − − − − − − 𝑖̂ + − − − − − − 𝑗̂ (𝑁) 𝜃𝑅 =                                𝜃𝐸 =              

Table 1: The components of the force vectors. 

 
B) Application of Experimental Method 

• By trial and error, find the angle for the third pulley and the mass which must be suspended from it 

that will balance the forces exerted on the strings by the other two masses. The third force is called 

the equilibrant (𝑭𝐸) since it is the force which establishes equilibrium. Recall that the equilibrant is the 

negative of the resultant: 

−𝑭𝐸 = 𝑭𝑅 = 𝑭𝐴 + 𝑭𝐵. 



Ring Method of Finding Equilibrium: The ring should be centered over the post when the system is in 

equilibrium. Screw the center post down so that it is flush with the top surface of the force table and no 

longer able to hold the ring in position. Pull the ring slightly to one side and let it go. Check to see that 

the ring returns to the center. If not, adjust the mass and/or angle of the pulley until the ring always 

returns to the center when pulled slightly to one side. 

• Record the mass and angle required for the third pulley (i.e., the equilibrant) to put the system into 

equilibrium in Table 2. Show all your computations and the forces (𝑭𝐴, 𝑭𝐵, 𝑭𝐸) on the protractor.  

Mass=𝑚 =          𝐹𝐸 = 

𝑭𝐸 = − − − − − − 𝑖̂ + − − − − − − 𝑗̂ (𝑁) 𝜃𝐸 =              

Table 2: Equilibrant obtained from the experiment. 

Compare the results obtained in Table 1 and Table 2: 

Method Equilibrant (𝑭𝐸) 

Magnitude Direction (𝜽) 

Experimental: 
 
𝑭𝐸 = − − − − − − 𝑖̂ + − − − − − − 𝑗̂ (𝑁) 
 

𝐹𝐸 = 𝜃𝐸 =              

Component: 
 
𝑭𝐸 = − − − − − − 𝑖̂ + − − − − − − 𝑗̂ (𝑁) 
 

𝐹𝐸 = 𝜃𝐸 =              

Table 3: Comparison of the two methods  

Comparing an experimental value to a theoretical value 

Percent error is used when comparing an experimental result 𝐸 with a theoretical value 𝑇 that is 
accepted as the "correct" value.  
 

Δ = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 (𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒) 𝑒𝑟𝑟𝑜𝑟 =  
|𝑇 − 𝐸|

𝑇
× 100% 

 
Fractional or relative uncertainty is used to quantitatively express the precision of a measurement. 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡 (𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒) 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 =
Δ

𝐸
 

 

Measurement = (measured value ± uncertainty) unit of measurement 

 

1) Determine the percent errors between the experimental value and the theoretical value of the 

magnitudes and angles. What are the possible two reasons of those errors?   

 

 

 

 

 

 

 

 

 

2)  Find the precisions of measurements made for the magnitudes and angles. 
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Experiment 2: Projectile Motion 
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Principle 
A ball is fired by a spring at different velocities and at different angles to the horizontal. The 
relationships between the range, the height of projection, the angle of inclination, and the firing 
velocity are determined. 
 
 

Equipment 

Recording paper; Ballistic Unit; Speed measuring attachment; Two-tier platform support; Balls; 
Meter scale; Barrel base expert 

 
Tasks 
 
1. To determine the range as a function of the angle of inclination. 

2. To determine the mathematical nature of the projectile motion. 

3. To determine the gravitational acceleration 𝑔, using the data collected from the experiment. 

 
  

Figure 1: Experimental set-up  

https://www.phywe.com/en/recording-paper-1-roll-25-m.html
https://www.phywe.com/en/ballistic-unit.html
https://www.phywe.com/en/speed-measuring-attachment.html
https://www.phywe.com/en/two-tier-platform-support.html
https://www.phywe.com/en/steel-ball-d-19-mm.html
https://www.phywe.com/en/meter-scale-l-1000-mm.html
https://www.phywe.com/en/barrel-base-expert.html


2 
 

Theory and evaluation 
If a body of mass 𝑚 moves in a constant gravitational field (gravitational force), the motion lies in 
a plane (see Fig. 2). 

 

Figure 2: Movement of a mass point under the effect of gravity 

If the coordinate system is laid in this plane (Fig. 2) and the equation of motion 𝑚
𝑑2

𝑑𝑡2
𝒓(𝑡) = 𝑚𝒈 

where 𝒓 = 𝑥𝑖̂ + 𝑦𝑗̂ and 𝒈 = −𝑔𝑗 ̂is solved with the initial conditions  
 

𝒓(𝟎) = 0𝑖̂ + 0𝑗̂,  
𝒗𝟎 = 𝑣0𝑐𝑜𝑠𝜙𝑖̂ + 𝑣0sin 𝜙𝑗̂ 

 

to obtain the coordinates as functions of time given by 
 

𝑥(𝑡) = (𝑣0𝑐𝑜𝑠𝜙)𝑡, 

𝑦(𝑡) = (𝑣0𝑠𝑖𝑛𝜙)𝑡 −
1

2
𝑔𝑡2. 

 

From these results, one finds the maximum height ℎ and the maximum range 𝑠 of the projectile 
as a function of the angle of projection 𝜙 given by 

ℎ =
𝑣0

2

2𝑔
𝑠𝑖𝑛2𝜙, 

𝑠 =
𝑣0

2

𝑔
sin (2𝜙). 

 

 

Figure 3: Maximum range s as a function of the angle of inclination ∅ for different initial velocity 𝑣0. 

Data in Fig. 3: Curve 1: 𝑣0 = 5.3 𝑚/𝑠,  Curve 2: 𝑣0 = 4.1 𝑚/𝑠,  Curve 3: 𝑣0 = 3.1 𝑚/𝑠 
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Figure 4: Maximum height of projection ℎ as a function of the angle 𝜙 of inclination for the initial 
velocities as in Fig. 1. 

The maximum range is reached at an inclination angle of 45° for every initial velocity. Fig. 5 shows 
the range for an angle of 45° plotted against different initial velocities 𝑣0. By choosing a logarithmic 
scale, a regression line can be applied to the measured data and used to determine the maximum 
range for arbitrary initial velocities. 
 

 
Figure 5: Maximum range as a function of the initial 
velocity 𝑣0 with a fixed angle of inclination ∅ = 45°. 

Note 
To ensure an accurate determination of the 
initial velocity, the time taken for the ball to 
cover the measuring distance must be 
considered. Depending on the angle of 
inclination, the ball already leaves the light 
barrier with a reduced velocity. If 𝑣𝑒𝑥𝑝 is the 

experimentally determined initial velocity we 
obtain as actual initial velocity:  

𝑣0 = √𝑣𝑒𝑥𝑝
2 + 𝑔 𝑑 𝑠𝑖𝑛𝜙  

 
where 𝑑 is the distance between the striker 
and the center between the light barriers. 
 
Caution:  

1) Do not load the launcher while your head 
or body is in the line of fire.  

2) Do not allow anyone to get hit by the ball.  
3) Do not perform any launch unless every 

member in your group is aware and ready.  
4) Do not load the launcher for the angled 

launch unless your instructor is present.  
5) You must put the ball in its place, first, and 

then load the launcher.  
6) Do not put your finger inside the launcher. 
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Procedure (Experimental Method) 

 

Maximum range: Use the ready setup and load the launcher for the minimum initial speed while the initial 

angle is variable. For each individual angle (in the Table 1) you launch the wooden ball and record its range 

in the Table 1.  

 

Table 1: Range of the ball versus the initial angle with constant initial velocity 𝑣0. 

𝜙 30° 35° 40° 45° 50° 55° 60° 

𝑠 (𝑚)        

𝑣0        

𝑣0
2sin (2 𝜙)        

  

Using the Table 1, sketch the graph of the range 𝑠 with respect to the initial angle of the projectile motion  

𝜙 in the following graph area. 

 

 

Figure 6: A graph of s versus ϕ. 
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Measurement of gravitational acceleration 

a) Using Table 1, plot the least square line 𝑠(𝑚) versus 𝑣0
2sin (2 𝜙) (𝑚2/𝑠2) in the following graph 

area.  
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b) Based on the least square line which you have already plotted, and the equation of the range 

of the projectile motion i.e., 𝑠 =
𝑣0

2

𝑔
sin (2𝜙) , find the experimental value of the gravitational 

constant 𝒈. This can be done simply by equating the slope of the least square line of the graph and 

the slope of the equation 𝑠 with respect to 𝑣0
2sin (2 𝜙) which is nothing but 𝑚 =

1

𝑔
. Note that to 

get reasonable answer from your analysis, you must use the units of the quantities involved in 
your calculation correctly. 
 
 
 
 
 
 
c) If the theoretical value of the gravitational acceleration is 𝑔 = 9.81 𝑚/𝑠2 find the 
percentage error. 
 
 
 
 
 
 
Questions: 
 

1) In the first graph what is the nature of the graph 𝑠 versus 𝜙? 
 
 
 
 
 

2) What are the possible sources of errors in this experiment? (Show at least two reasons) 
 
 

 
 

 

3) If one launches the ball vertically i.e., 𝜙 = 90° what will be the maximum height? (Express 

your answer in terms of 𝑣0  and 𝑔) 
 
 
 
 

 

4) If one launches the ball horizontally i.e., 𝜙 = 0° what will be the range? (Express your 

answer in terms of 𝑣0  , 𝑔 and height) 
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Experiment 3: Newton’s Second Law 
 

 

 

Powered by  

 
Theory 

 
Newton's second law is given by 

𝑭⃗⃗ 𝒏𝒆𝒕 = 𝚺𝑭⃗⃗ = 𝒎𝒂⃗⃗  

where 𝑭⃗⃗ 𝒏𝒆𝒕 is the total force an object, 𝒎 is the 
mass, and 𝒂⃗⃗  stands for the acceleration. 
 

 
The way to test this theory is to apply a force to an object and measure its acceleration. In this 

experiment, you will learn how to measure the acceleration by using the sonic ranger, getting data 

(with Xplorer), and draw its associated graph with Excel. To do this, you will use a setup such as the 

one below. 

  

 

 

 

 

Analyzing this motion may seem difficult, but it is not. By using the Free Body Diagram technique, one 

can get the following equations (all the frictional forces are ignored during the computations): 

𝑇 − 𝑀2𝑔 = −𝑀2𝑎 

𝑇 = 𝑀1𝑎 

  

Figure 1: Experimental set-up  
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By subtracting the above two equations from each other, we obtain 

𝑀2𝑔 = (𝑀1 + 𝑀2)𝑎               (1) 

In this experiment, you will vary the force, keep the total mass of the system constant, and measure 

the corresponding acceleration. 𝑀2 will be the sum of the mass of hanger and the various masses 

hanging on it. The mass reduced from 𝑀2 should be placed on 𝑀1. Thus, the total mass (𝑀1 + 𝑀2) will 

always be remained constant. 

 

Procedure 

 

• Start with 0.045 𝑘𝑔 for 𝑀2. This will consist of the hanger (which is 5𝑔 = 0.005 𝑘𝑔), two 10𝑔 and 

one 20𝑔 masses: [𝑀2 = (5 + 20 + 10 + 10) × 10−3𝑘𝑔 = 0.045𝑘𝑔] 

 

 

 

 

 

 

 

 

 

 

 

• Add two of the 250𝑔 bars on the cart having 𝟐𝟓𝟓𝒈 tare mass. 

 

 

 

 

 

 

 

 

 

•  To find the acceleration, you will take the data while the cart is moving towards and away from the 

sonic ranger. For this aim, you will use the Xplorer GLX device. Thus, you will obtain the following 

data tables of “distance versus time and time square”. While doing this, you will reduce the mass on 

the hanger (i.e., 𝑀2 ↓) and keep the total mass constant (𝑀1 + 𝑀2 = 800𝑔 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡). 
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Fill the following data tables: 

Table-1: When 𝑀2 = 45𝑔 and 𝑀1 = 755𝑔 

𝑑(𝑚)      

𝑡(𝑠)      

𝑡2(𝑠2)      

 

Table-2: When 𝑀2 = 35𝑔 and 𝑀1 = 765𝑔 

𝑑(𝑚)      

𝑡(𝑠)      

𝑡2(𝑠2)      

 

Table-3: When 𝑀2 = 25𝑔 and 𝑀1 = 775𝑔 

𝑑(𝑚)      

𝑡(𝑠)      

𝑡2(𝑠2)      

 

Table-4: When 𝑀2 = 15𝑔 and 𝑀1 = 785𝑔 

𝑑(𝑚)      

𝑡(𝑠)      

𝑡2(𝑠2)      

 

and draw the graph by Excel. 

• For each data table, draw the graph of 𝑑 (𝑚) versus  𝑡2(𝑠2) by using Excel program. 

• Find the slope of the least square line of each 𝑑(𝑚) versus 𝑡2(𝑠2) graph and calculate 

the associated accelerations. (Hint: Recall that 𝒅 =
𝟏

𝟐
𝒂𝒕𝟐). 

• Copy the obtained accelerations to the following table: 

Table-5: 

𝑀2(𝑘𝑔) 0.045 0.035 0.025 0.015 

𝑎(𝑚/𝑠2)     

 

Finding Gravitational Acceleration 

• By using Excel plot the least square line of 𝑎(𝑚/𝑠2) versus 𝑀2(𝑘𝑔) graph.  

• Find the slope of the least square line of 𝑎(𝑚/𝑠2) versus 𝑀2(𝑘𝑔) graph.  

• Use Eq. (1) to find the experimental value of the magnitude of gravitational acceleration 𝑔: 

𝑔𝑒𝑥𝑝 =…………….. 

• If the theoretical value of 𝑔𝑡ℎ = 9.81(
𝑚

𝑠2), find the percentage error and the precisions of 

measurements made for the magnitude of the gravitational acceleration.  

Recall that "Δ = 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 (𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒)𝑒𝑟𝑟𝑜𝑟 =  
|𝑇 − 𝐸|

𝑇
× 100   &    𝑃𝑒𝑟𝑐𝑒𝑛𝑡 (𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒) 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 =

Δ

𝐸
" 
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Questions 

 

1. What physical property does the slope of a Force v Acceleration graph represent? 

 

2. In the absence of an external force, a moving object will  

a) move with constant velocity.  

b) stop immediately.  

c) slow down and eventually come to a stop.  

d) go faster and faster. 

 

 

3. You are standing in a moving bus, facing forward, and you suddenly fall forward as the bus comes 

to an immediate stop. What force caused you to fall forward?  

a) Gravity.  

b) Normal force due to your contact with the floor of the bus.  

c) Force due to friction between you and the floor of the bus.  

d) There is not a force leading to your fall. 

 

 

4. A 20𝑁 weight and a 5𝑁 weight are dropped simultaneously from the same height. Ignore air 

resistance. Compare their accelerations.  

a) The 20 N weight accelerates faster because it is heavier.  

b) The 20 N weight accelerates faster because it has more inertia.  

c) The 5.0 N weight accelerates faster because it has a smaller mass.  

d) They both accelerate at the same rate because they have the same weight to mass ratio. 

 

5. Who has a greater weight to mass ratio, a person weighing 400 N or a person weighing 600 N?  

a) the person weighing 400 N  

b) the person weighing 600 N  

c) Neither; their ratios are the same.  

d) The question can't be answered; not enough information is given. 
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Experiment 4: Conservation of Energy 
 

 

 

 
 
 

Equipment: Roller Coaster Complete System; Photogate Heads; Smart Timer 

 

Introduction 

A car is started from rest on a variety of shapes of tracks and the speeds of the car at various points 

along the track are measured using a photogate connected to a Smart Timer. The potential energy 

is calculated from the measured height and the kinetic energy is calculated from the speed. The 

total energy is calculated for two points on the track and compared. 

 

The height from which the car must be released from rest to just make it over the loop can be 

predicted from conservation of energy and the centripetal acceleration.  Then the prediction can 

be tested on the real roller coaster.  Also, if the car is released from the top of the hill so it easily 

makes it over the top of the loop, the speed of the car can be measured at the top of the loop and 

the centripetal acceleration as well as the apparent weight (normal force) on the car can be 

calculated. 

 

Theory 

 

The total energy (𝐸) of the car is equal to its kinetic energy ( 2

2

1
mvK  ) and its potential energy 

(𝑈 = 𝑚𝑔ℎ), where 𝑚 is the mass of the car and 𝑣 is the speed of the car. 𝑔 is the acceleration due 

to gravity and ℎ is the height of the car above the position, where the potential energy is defined 

to be zero. If the friction is ignored, the total energy of the car does not change. The Law of 

Conservation of Energy is stated as 

  

𝐸 =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡   finalfinalinitialinitial UKUK   
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A-Step Procedure   

 

 

 
 

 

     

1. Follow the Path-1 seen in Figure 1. 

 

2. Place the car (without extra mass 

attached on it) to the starting point at 

the leftmost of the track and measure 

the height (ℎ𝑖) of the car from the 

surface of the table. Note that the 

center of mass of the car is 

approximately at the slot where the 

flag is inserted.  

(Car’s tare mass is 𝒎 = 𝟒𝟐. 𝟕𝒈). 

ℎ𝑖 =           
3. Place the car at the top and release it 

from rest.  Use the photogate and 

Smart Timer (set on the Speed: One 

Gate Mode) to measure the speed of 

the cart at the bottom of the step. 

 

4. Calculate the initial total energy of 

the car. 

𝐸𝑖 = 

 

 

 

5. Calculate the final total energy of the 

car. 

 

𝐸𝑓 = 

 

 

 

6. How much energy is lost? Where 

does it go? 

 

𝐸𝑙𝑜𝑠𝑡 = 

 

 

 

7. Calculate the percent of total energy 

lost.   

% % 100lost

i

E
Lost

E
 

  

 

8. Attach the 50g mass to the car and 

repeat steps 2 through 8 above. 

 

 

Questions 

1. How does increasing the mass of the car change the total energy? 

 

2. How does increasing the mass of the car change the speed of the car at the bottom? 

 

3. Does the car lose a greater percentage of its energy when it has the extra mass or not? 

  

𝐸𝑖 = 𝐸𝑙𝑜𝑠𝑡 = 

𝐸𝑓 = %𝐿𝑜𝑠𝑡 = 

Figure 1: Step Configuration 
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B-Loop Procedure 

 

 

 

 

 

 

 

 

 

     

 

     

1. Follow the Path-2 seen in Figure 2. 

 

2.  Place the car (with attached extra 

mass 50g) to the starting point at the 

leftmost of the track. Recall that you 

have already measured the height (ℎ𝑖) 

of the car from the surface of the table 

in A-2 part. (𝒎 = 𝟗𝟐. 𝟕𝒈) 

ℎ𝑖 =      
 

3. Calculate the initial total energy of the 

car. 

𝐸𝑖 = 

 

 

 

4. Calculate the final total energy of the car. 

5. How much energy is lost? Where does it 

go? 

𝐸𝑙𝑜𝑠𝑡 = 

 

 

 

 

6. Calculate the percent of total energy 

lost.  

% % 100lost

i

E
Lost

E
 

  

 

7. By using the speed of the car at the top 

of the loop and the centripetal acceleration 

formula, compute the magnitude of the 

apparent weight (normal force) on the car. 

𝐸𝑓 = 

 

 

Question 

 

1. Comparing the result of section B with the result obtained in section-A, for the car with 50g 

extra mass, which car does have the greater speed at the right end of the track since they have 

almost same height difference?  How does energy conservation explain your answer?   

 

 

  

Figure 2: Loop Configuration 
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C- Critical Height  

 

 

 

1. Follow the Path seen in Figure 3. 

 

2. Measure from the center of the loop to the center of mass of the car (without extra mass) at the 

top of the loop (see Figure 4), and obtain 𝑅 =? 

 

𝑅 = 

 

3. Measure the distance from the center of mass of the car at the top of the loop to the table (ℎ2 =?). 

 

ℎ2 = 

 

4. Using Conservation of Energy, compute the critical height (ℎ1 =?) from which the car can be 

released on the left end of the track, so that the car will just lose its contact with the surface at the 

top of the loop. At that moment, the critical speed is 𝑣 ≡ 𝑣𝑐 = √𝑅𝑔. 

(𝐻𝑖𝑛𝑡: 𝑚𝑔ℎ1 ≅
1

2
𝑚𝑣2 + 𝑚𝑔ℎ2) 

 

 

 

 

 

 

 

5. Place the center of mass of the car at the ℎ1 position and release it from rest.  

 

 

 

Question 

 

Does the car make the loop over?  Explain why or why not? 

 

Figure 3 Figure 4 

h1

h2

R
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Experiment 5: Conservation of Linear Momentum and Kinetic Energy 

 

 

 

PURPOSE 

 In a collision process on an air track to check that linear momentum and total kinetic energy are 

conserved. 

APPARATUS  

Air track, gliders with flags, electronic timers mounted to photogates. 

 

THEORY  

On an air track, in principle, the friction is reduced to zero. For this reason, it becomes very suitable 

to make collision experiments on an air track. For this purpose, we use two gliders with variable 

masses on the air track and two photogates to record electronically the time intervals. Each glider 

has a flag on it with a length of 𝑙 = 10 𝑐𝑚. (see Fig. (5.1)). Prior to the collision we denote the 

speeds of objects (the gliders) by 𝑣₁ (with mass 𝑀₁) and 𝑣₂ (with mass 𝑀₂). After the collision 

these become 𝑣₁′ and 𝑣₂′, respectively. Accordingly, the conservation principle of linear 

momentum is expressed by 

5.1 

Figure 5.1 
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𝑀1𝑣⃗1 + 𝑀2𝑣⃗2 = −𝑀1𝑣⃗1
′ + 𝑀2𝑣⃗2

′ . 

Since the air track is a one-dimensional object the process takes place in one-dimension only, say 

the 𝑥-axis. Depending on the directions of velocities, the velocities can at most be ± in sign. 

Similarly, the conservation principle for the total kinetic energy in an Elastic Collision can be 

expressed by 

1

2
𝑀₁𝑣₁² +

1

2
𝑀₂𝑣₂² =

1

2
𝑀₁𝑣′₁² +

1

2
𝑀₂𝑣′₂². 

Let us remind that each kinetic energy term is automatically positive. In order to make sure that 

no potential energy due to gravity is involved the air track must be perfectly horizontal. This must 

be checked in the beginning before the experiment is started. What we aim in this experiment 

essentially is to check the validity of Eq. (5.1) and Eq. (5.2). 

The most important part of the experiment is to find the speeds correctly. For this purpose, we use 

photogates that electronically record time passage for each glider. If the time is recorded by 𝑡₁ and 

the length of the flag on the glider is 𝑙1 then, from the relation 

𝑣1 =
𝑙1

𝑡1
, 

we can find the speed 𝑣₁ and similarly the other speeds. In order to make the experiment simpler, 

so that we can conduct better measurements we assume throughout the experiment that 𝑣2 = 0 , 

that is one of the objects (𝑀2) is at rest initially. This casts our equations of linear momentum and 

kinetic energy conservations into the forms 

𝑀1𝑣1 = −𝑀1𝑣1
′ + 𝑀2𝑣2

′ , 

1

2
𝑀₁𝑣₁² =

1

2
𝑀₁𝑣′₁² +

1

2
𝑀₂𝑣′₂², 

so that we have to find only three speeds instead of four. 

 

 

EXPERIMENTAL PROCEDURE  

First you have to check that the air track is perfectly horizontal with zero inclination angle. Then, 

put the masses provided in the table below, on each glider. Make the arrangement as in Fig. (5.1). 

5.2 

5.3 

5.4 

5.5 



3 
 

One of the gliders (𝑀₂) at rest is between the two photogates while the other one (𝑀₁) lies outside 

the photogates. Before we move 𝑀₁ with initial speed 𝑣₁, we turn on the pump of the air track (to 

maximum level) so that friction becomes zero.  

As 𝑀₁ passes through one of the photogates its time will be recorded. Fill the following table 

knowing that the tare masses of the gliders are same and equal to 𝑚𝑔𝑙𝑖𝑑𝑒𝑟 = 0.210𝑘𝑔. The two 

gliders will collide and they will pass through different photogates. In this way their times 

(𝑡₁, 𝑡₁′ 𝑎𝑛𝑑 𝑡₂′) will be recorded and speeds will be found from Eq. (5.3).  

RAW DATA 

 𝑡₁(𝑠) 𝑡₁′(𝑠) 𝑡₂′(𝑠) 𝑣₁ =
0.10

𝑡₁
 𝑣′₁ =

0.10

𝑡′₁
 𝑣2 𝑣′2 =

0.10

𝑡′2
 𝑀₁(𝑘𝑔) 𝑀₂(𝑘𝑔) 

1      0  0.210 0.310 

2      0  0.210 0.410 

3      0  0.230 0.310 

4      0  0.230 0.410 

 

DATA ANALYSIS 

We shall be knowing now, 𝑣₁, 𝑣₁′, 𝑎𝑛𝑑 𝑣₂′ to be substituted into Eqs. (5.4) and (5.5). If Eq. (5.4) 

is satisfied this will mean that in the process of collision linear momentum is conserved. Similarly, 

Eq. (5.5) will tell us that the total kinetic energy is conserved in the process. 

In such an experiment we must admit that a few percent error between the left- and right-hand 

sides of Eqs. (5.4) and (5.5) are tolerable. The students must be able to explain about the possible 

numerical differences in those equations. For example, is the collision exactly elastic? Is there 

some energy loss taking place in the collision process? How? 

CAUTION  

If the difference between the left- and right-hand sides of Eqs. (5.4) and (5.5) are big, that means 

the data taken is not recorded correctly. So, please repeat the experiment and reduce your errors as 
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much as possible. For example, if 𝑀₁ comes to a stop after collision you should increase its initial 

speed so that it will gain enough speed to pass through the photogate after the collision. 

QUESTIONS  

1) What are the differences between elastic, inelastic and completely inelastic collisions? 

2) Can you give an example for each different case? 
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